Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction
Abstract: Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.