Minimal complexes of cotorsion flat modules (1702.02985v4)
Abstract: Let R be a commutative noetherian ring. We give criteria for a complex of cotorsion flat R-modules to be minimal, in the sense that every self homotopy equivalence is an isomorphism. To do this, we exploit Enochs' description of the structure of cotorsion flat R-modules. More generally, we show that any complex built from covers in every degree (or envelopes in every degree) is minimal, as well as give a partial converse to this in the context of cotorsion pairs. As an application, we show that every R-module is isomorphic in the derived category over R to a minimal semi-flat complex of cotorsion flat R-modules.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.