Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Approximation is Provably Hard under Coherent Dictionaries

Published 9 Feb 2017 in cs.CC, cs.IT, and math.IT | (1702.02885v1)

Abstract: It is well known that sparse approximation problem is \textsf{NP}-hard under general dictionaries. Several algorithms have been devised and analyzed in the past decade under various assumptions on the \emph{coherence} $\mu$ of the dictionary represented by an $M \times N$ matrix from which a subset of $k$ column vectors is selected. All these results assume $\mu=O(k{-1})$. This article is an attempt to bridge the big gap between the negative result of \textsf{NP}-hardness under general dictionaries and the positive results under this restrictive assumption. In particular, it suggests that the aforementioned assumption might be asymptotically the best one can make to arrive at any efficient algorithmic result under well-known conjectures of complexity theory. In establishing the results, we make use of a new simple multilayered PCP which is tailored to give a matrix with small coherence combined with our reduction.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.