Papers
Topics
Authors
Recent
Search
2000 character limit reached

Effective face landmark localization via single deep network

Published 9 Feb 2017 in cs.CV | (1702.02719v1)

Abstract: In this paper, we propose a novel face alignment method using single deep network (SDN) on existing limited training data. Rather than using a max-pooling layer followed one convolutional layer in typical convolutional neural networks (CNN), SDN adopts a stack of 3 layer groups instead. Each group layer contains two convolutional layers and a max-pooling layer, which can extract the features hierarchically. Moreover, an effective data augmentation strategy and corresponding training skills are also proposed to over-come the lack of training images on COFW and 300-W da-tasets. The experiment results show that our method outper-forms state-of-the-art methods in both detection accuracy and speed.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.