Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Feldman-Katok pseudometric and the GIKN construction of nonhyperbolic ergodic measures (1702.01962v1)

Published 7 Feb 2017 in math.DS

Abstract: The GIKN construction was introduced by Gorodetski, Ilyashenko, Kleptsyn, and Nalsky in [Functional Analysis and its Applications, 39 (2005), 21--30]. It gives a nonhyperbolic ergodic measure which is a weak$*$ limit of a special sequence of measures supported on periodic orbits. This method was later adapted by numerous authors and provided examples of nonhyperbolic invariant measures in various settings. We prove that the result of the GIKN construction is always a loosely Kronecker measure in the sense of Ornstein, Rudolph, and Weiss (equivalently, standard measure in the sense of Katok, another name is loosely Bernoulli measure with zero entropy). For a proof we introduce and study the Feldman-Katok pseudometric $\bar{F_{K}}$. The pseudodistance $\bar{F_{K}}$ is a topological counterpart of the $\bar f$ metric for finite-state stationary stochastic processes introduced by Feldman and, independently, by Katok, later developed by Ornstein, Rudolph, and Weiss. We show that every measure given by the GIKN construction is the $\bar{F_{K}}$-limit of a sequence of periodic measures. On the other hand we prove that a measure which is the $\bar{F_{K}}$-limit of a sequence of ergodic measures is ergodic and its entropy is smaller or equal than the lower limit of entropies of measures in the sequence. Furthermore we demonstrate that $\bar{F_{K}}$-Cauchy sequence of periodic measures tends in the weak$*$ topology either to a periodic measure or to a loosely Kronecker measure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.