Papers
Topics
Authors
Recent
Search
2000 character limit reached

Opinion Recommendation using Neural Memory Model

Published 6 Feb 2017 in cs.CL | (1702.01517v1)

Abstract: We present opinion recommendation, a novel task of jointly predicting a custom review with a rating score that a certain user would give to a certain product or service, given existing reviews and rating scores to the product or service by other users, and the reviews that the user has given to other products and services. A characteristic of opinion recommendation is the reliance of multiple data sources for multi-task joint learning, which is the strength of neural models. We use a single neural network to model users and products, capturing their correlation and generating customised product representations using a deep memory network, from which customised ratings and reviews are constructed jointly. Results show that our opinion recommendation system gives ratings that are closer to real user ratings on Yelp.com data compared with Yelp's own ratings, and our methods give better results compared to several pipelines baselines using state-of-the-art sentiment rating and summarization systems.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.