Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Experimental Study of Deep Convolutional Features For Iris Recognition (1702.01334v1)

Published 4 Feb 2017 in cs.CV and cs.LG

Abstract: Iris is one of the popular biometrics that is widely used for identity authentication. Different features have been used to perform iris recognition in the past. Most of them are based on hand-crafted features designed by biometrics experts. Due to tremendous success of deep learning in computer vision problems, there has been a lot of interest in applying features learned by convolutional neural networks on general image recognition to other tasks such as segmentation, face recognition, and object detection. In this paper, we have investigated the application of deep features extracted from VGG-Net for iris recognition. The proposed scheme has been tested on two well-known iris databases, and has shown promising results with the best accuracy rate of 99.4\%, which outperforms the previous best result.

Citations (140)

Summary

We haven't generated a summary for this paper yet.