An Experimental Study of Deep Convolutional Features For Iris Recognition
Abstract: Iris is one of the popular biometrics that is widely used for identity authentication. Different features have been used to perform iris recognition in the past. Most of them are based on hand-crafted features designed by biometrics experts. Due to tremendous success of deep learning in computer vision problems, there has been a lot of interest in applying features learned by convolutional neural networks on general image recognition to other tasks such as segmentation, face recognition, and object detection. In this paper, we have investigated the application of deep features extracted from VGG-Net for iris recognition. The proposed scheme has been tested on two well-known iris databases, and has shown promising results with the best accuracy rate of 99.4\%, which outperforms the previous best result.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.