Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multilingual Multi-modal Embeddings for Natural Language Processing

Published 3 Feb 2017 in cs.CL | (1702.01101v1)

Abstract: We propose a novel discriminative model that learns embeddings from multilingual and multi-modal data, meaning that our model can take advantage of images and descriptions in multiple languages to improve embedding quality. To that end, we introduce a modification of a pairwise contrastive estimation optimisation function as our training objective. We evaluate our embeddings on an image-sentence ranking (ISR), a semantic textual similarity (STS), and a neural machine translation (NMT) task. We find that the additional multilingual signals lead to improvements on both the ISR and STS tasks, and the discriminative cost can also be used in re-ranking $n$-best lists produced by NMT models, yielding strong improvements.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.