Multilingual Multi-modal Embeddings for Natural Language Processing
Abstract: We propose a novel discriminative model that learns embeddings from multilingual and multi-modal data, meaning that our model can take advantage of images and descriptions in multiple languages to improve embedding quality. To that end, we introduce a modification of a pairwise contrastive estimation optimisation function as our training objective. We evaluate our embeddings on an image-sentence ranking (ISR), a semantic textual similarity (STS), and a neural machine translation (NMT) task. We find that the additional multilingual signals lead to improvements on both the ISR and STS tasks, and the discriminative cost can also be used in re-ranking $n$-best lists produced by NMT models, yielding strong improvements.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.