Papers
Topics
Authors
Recent
2000 character limit reached

Boundary-bulk relation in topological orders

Published 2 Feb 2017 in cond-mat.str-el and math.QA | (1702.00673v3)

Abstract: In this paper, we study the relation between an anomaly-free $n+$1D topological order, which are often called $n+$1D topological order in physics literature, and its $n$D gapped boundary phases. We argue that the $n+$1D bulk anomaly-free topological order for a given $n$D gapped boundary phase is unique. This uniqueness defines the notion of the "bulk" for a given gapped boundary phase. In this paper, we show that the $n+$1D "bulk" phase is given by the "center" of the $n$D boundary phase. In other words, the geometric notion of the "bulk" corresponds precisely to the algebraic notion of the "center". We achieve this by first introducing the notion of a morphism between two (potentially anomalous) topological orders of the same dimension, then proving that the notion of the "bulk" satisfies the same universal property as that of the "center" of an algebra in mathematics, i.e. "bulk = center". The entire argument does not require us to know the precise mathematical description of a (potentially anomalous) topological order. This result leads to concrete physical predictions.

Citations (83)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.