Papers
Topics
Authors
Recent
Search
2000 character limit reached

Approximate Variational Estimation for a Model of Network Formation

Published 1 Feb 2017 in stat.ME and stat.OT | (1702.00308v4)

Abstract: We develop approximate estimation methods for exponential random graph models (ERGMs), whose likelihood is proportional to an intractable normalizing constant. The usual approach approximates this constant with Monte Carlo simulations, however convergence may be exponentially slow. We propose a deterministic method, based on a variational mean-field approximation of the ERGM's normalizing constant. We compute lower and upper bounds for the approximation error for any network size, adapting nonlinear large deviations results. This translates into bounds on the distance between true likelihood and mean-field likelihood. Monte Carlo simulations suggest that in practice our deterministic method performs better than our conservative theoretical approximation bounds imply, for a large class of models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.