Papers
Topics
Authors
Recent
2000 character limit reached

Selecting the Number of States in Hidden Markov Models - Pitfalls, Practical Challenges and Pragmatic Solutions

Published 30 Jan 2017 in stat.ME and q-bio.QM | (1701.08673v2)

Abstract: We discuss the notorious problem of order selection in hidden Markov models, i.e. of selecting an adequate number of states, highlighting typical pitfalls and practical challenges arising when analyzing real data. Extensive simulations are used to demonstrate the reasons that render order selection particularly challenging in practice despite the conceptual simplicity of the task. In particular, we demonstrate why well-established formal procedures for model selection, such as those based on standard information criteria, tend to favor models with numbers of states that are undesirably large in situations where states shall be meaningful entities. We also offer a pragmatic step-by-step approach together with comprehensive advice for how practitioners can implement order selection. Our proposed strategy is illustrated with a real-data case study on muskox movement.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.