Papers
Topics
Authors
Recent
2000 character limit reached

On a conjecture of Sokal concerning roots of the independence polynomial

Published 27 Jan 2017 in math.CO, cs.DS, and math.DS | (1701.08049v3)

Abstract: A conjecture of Sokal (2001) regarding the domain of non-vanishing for independence polynomials of graphs, states that given any natural number $\Delta \ge 3$, there exists a neighborhood in $\mathbb C$ of the interval $[0, \frac{(\Delta-1){\Delta-1}}{(\Delta-2){\Delta}})$ on which the independence polynomial of any graph with maximum degree at most $\Delta$ does not vanish. We show here that Sokal's Conjecture holds, as well as a multivariate version, and prove optimality for the domain of non-vanishing. An important step is to translate the setting to the language of complex dynamical systems.

Citations (71)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.