Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds on the Complexity of Solving Two Classes of Non-cooperative Games (1701.06717v1)

Published 24 Jan 2017 in cs.IT and math.IT

Abstract: This paper studies the complexity of solving two classes of non-cooperative games in a distributed manner in which the players communicate with a set of system nodes over noisy communication channels. The complexity of solving each game class is defined as the minimum number of iterations required to find a Nash equilibrium (NE) of any game in that class with $\epsilon$ accuracy. First, we consider the class $\mathcal{G}$ of all $N$-player non-cooperative games with a continuous action space that admit at least one NE. Using information-theoretic inequalities, we derive a lower bound on the complexity of solving $\mathcal{G}$ that depends on the Kolmogorov $2\epsilon$-capacity of the constraint set and the total capacity of the communication channels. We also derive a lower bound on the complexity of solving games in $\mathcal{G}$ which depends on the volume and surface area of the constraint set. We next consider the class of all $N$-player non-cooperative games with at least one NE such that the players' utility functions satisfy a certain (differential) constraint. We derive lower bounds on the complexity of solving this game class under both Gaussian and non-Gaussian noise models. Our result in the non-Gaussian case is derived by establishing a connection between the Kullback-Leibler distance and Fisher information.

Summary

We haven't generated a summary for this paper yet.