Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Stationary Nash Equilibrium Policies in $n$-Player Stochastic Games with Independent Chains (2201.12224v4)

Published 28 Jan 2022 in cs.LG, cs.GT, cs.MA, cs.SY, eess.SY, and math.OC

Abstract: We consider a subclass of $n$-player stochastic games, in which players have their own internal state/action spaces while they are coupled through their payoff functions. It is assumed that players' internal chains are driven by independent transition probabilities. Moreover, players can receive only realizations of their payoffs, not the actual functions, and cannot observe each other's states/actions. For this class of games, we first show that finding a stationary Nash equilibrium (NE) policy without any assumption on the reward functions is interactable. However, for general reward functions, we develop polynomial-time learning algorithms based on dual averaging and dual mirror descent, which converge in terms of the averaged Nikaido-Isoda distance to the set of $\epsilon$-NE policies almost surely or in expectation. In particular, under extra assumptions on the reward functions such as social concavity, we derive polynomial upper bounds on the number of iterates to achieve an $\epsilon$-NE policy with high probability. Finally, we evaluate the effectiveness of the proposed algorithms in learning $\epsilon$-NE policies using numerical experiments for energy management in smart grids.

Citations (6)

Summary

We haven't generated a summary for this paper yet.