Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication-efficient and Differentially-private Distributed Nash Equilibrium Seeking with Linear Convergence (2405.04757v1)

Published 8 May 2024 in eess.SY, cs.GT, and cs.SY

Abstract: The distributed computation of a Nash equilibrium (NE) for non-cooperative games is gaining increased attention recently. Due to the nature of distributed systems, privacy and communication efficiency are two critical concerns. Traditional approaches often address these critical concerns in isolation. This work introduces a unified framework, named CDP-NES, designed to improve communication efficiency in the privacy-preserving NE seeking algorithm for distributed non-cooperative games over directed graphs. Leveraging both general compression operators and the noise adding mechanism, CDP-NES perturbs local states with Laplacian noise and applies difference compression prior to their exchange among neighbors. We prove that CDP-NES not only achieves linear convergence to a neighborhood of the NE in games with restricted monotone mappings but also guarantees $\epsilon$-differential privacy, addressing privacy and communication efficiency simultaneously. Finally, simulations are provided to illustrate the effectiveness of the proposed method.

Summary

We haven't generated a summary for this paper yet.