Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Mortality Risk Predictions in Pediatric Critical Care Using Recurrent Neural Networks (1701.06675v1)

Published 23 Jan 2017 in stat.ML, cs.NE, math.DS, and q-bio.QM

Abstract: Viewing the trajectory of a patient as a dynamical system, a recurrent neural network was developed to learn the course of patient encounters in the Pediatric Intensive Care Unit (PICU) of a major tertiary care center. Data extracted from Electronic Medical Records (EMR) of about 12000 patients who were admitted to the PICU over a period of more than 10 years were leveraged. The RNN model ingests a sequence of measurements which include physiologic observations, laboratory results, administered drugs and interventions, and generates temporally dynamic predictions for in-ICU mortality at user-specified times. The RNN's ICU mortality predictions offer significant improvements over those from two clinically-used scores and static machine learning algorithms.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.