Papers
Topics
Authors
Recent
Search
2000 character limit reached

What the Language You Tweet Says About Your Occupation

Published 22 Jan 2017 in cs.CY, cs.AI, cs.CL, and cs.LG | (1701.06233v1)

Abstract: Many aspects of people's lives are proven to be deeply connected to their jobs. In this paper, we first investigate the distinct characteristics of major occupation categories based on tweets. From multiple social media platforms, we gather several types of user information. From users' LinkedIn webpages, we learn their proficiencies. To overcome the ambiguity of self-reported information, a soft clustering approach is applied to extract occupations from crowd-sourced data. Eight job categories are extracted, including Marketing, Administrator, Start-up, Editor, Software Engineer, Public Relation, Office Clerk, and Designer. Meanwhile, users' posts on Twitter provide cues for understanding their linguistic styles, interests, and personalities. Our results suggest that people of different jobs have unique tendencies in certain language styles and interests. Our results also clearly reveal distinctive levels in terms of Big Five Traits for different jobs. Finally, a classifier is built to predict job types based on the features extracted from tweets. A high accuracy indicates a strong discrimination power of language features for job prediction task.

Citations (44)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.