Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the optimality of sliced inverse regression in high dimensions (1701.06009v2)

Published 21 Jan 2017 in math.ST and stat.TH

Abstract: The central subspace of a pair of random variables $(y,x) \in \mathbb{R}{p+1}$ is the minimal subspace $\mathcal{S}$ such that $y \perp \hspace{-2mm} \perp x\mid P_{\mathcal{S}}x$. In this paper, we consider the minimax rate of estimating the central space of the multiple index models $y=f(\beta_{1}{\tau}x,\beta_{2}{\tau}x,...,\beta_{d}{\tau}x,\epsilon)$ with at most $s$ active predictors where $x \sim N(0,I_{p})$. We first introduce a large class of models depending on the smallest non-zero eigenvalue $\lambda$ of $var(\mathbb{E}[x|y])$, over which we show that an aggregated estimator based on the SIR procedure converges at rate $d\wedge((sd+s\log(ep/s))/(n\lambda))$. We then show that this rate is optimal in two scenarios: the single index models; and the multiple index models with fixed central dimension $d$ and fixed $\lambda$. By assuming a technical conjecture, we can show that this rate is also optimal for multiple index models with bounded dimension of the central space. We believe that these (conditional) optimal rate results bring us meaningful insights of general SDR problems in high dimensions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.