Papers
Topics
Authors
Recent
2000 character limit reached

Biquandle Virtual Brackets

Published 15 Jan 2017 in math.GT and math.QA | (1701.03982v2)

Abstract: We introduce an infinite family of quantum enhancements of the biquandle counting invariant we call biquandle virtual brackets. Defined in terms of skein invariants of biquandle colored oriented knot and link diagrams with values in a commutative ring $R$ using virtual crossings as smoothings, these invariants take the form of multisets of elements of $R$ and can be written in a "polynomial" form for convenience. The family of invariants defined herein includes as special cases all quandle and biquandle 2-cocycle invariants, all classical skein invariants (Alexander-Conway, Jones, HOMFLYPT and Kauffman polynomials) and all biquandle bracket invariants defined in previous work as well as new invariants defined using virtual crossings in a fundamental way, without an obvious purely classical definition.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.