Papers
Topics
Authors
Recent
2000 character limit reached

A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus (1701.03068v3)

Published 11 Jan 2017 in math.CV, cond-mat.mtrl-sci, math-ph, math.MP, and physics.geo-ph

Abstract: We present a new approach based on linear integro-differential operators with logarithmic kernel related to the Hadamard fractional calculus in order to generalize, by a parameter $\nu \in (0,1]$, the logarithmic creep law known in rheology as Lomnitz law (obtained for $\nu=1$). We derive the constitutive stress-strain relation of this generalized model in a form that couples memory effects and time-varying viscosity. Then, based on the hereditary theory of linear viscoelasticity, we also derive the corresponding relaxation function by solving numerically a Volterra integral equation of the second kind. So doing we provide a full characterization of the new model both in creep and in relaxation representation, where the slow varying functions of logarithmic type play a fundamental role as required in processes of ultra slow kinetics.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.