The empirical Christoffel function with applications in data analysis
Abstract: We illustrate the potential applications in machine learning of the Christoffel function, or more precisely, its empirical counterpart associated with a counting measure uniformly supported on a finite set of points. Firstly, we provide a thresholding scheme which allows to approximate the support of a measure from a finite subset of its moments with strong asymptotic guaranties. Secondly, we provide a consistency result which relates the empirical Christoffel function and its population counterpart in the limit of large samples. Finally, we illustrate the relevance of our results on simulated and real world datasets for several applications in statistics and machine learning: (a) density and support estimation from finite samples, (b) outlier and novelty detection and (c) affine matching.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.