Papers
Topics
Authors
Recent
2000 character limit reached

Oscillations and damping in the fractional Maxwell materials

Published 9 Jan 2017 in cond-mat.soft | (1701.02155v2)

Abstract: This paper examines the oscillatory behaviour of complex viscoelastic systems with power law-like relaxation behaviour. Specifically, we use the fractional Maxwell model, consisting of a spring and fractional dashpot in series, which produces a power-law creep behaviour and a relaxation law following the Mittag-Leffler function. The fractional dashpot is characterised by a parameter beta, continuously moving from the pure viscous behaviour when beta=1 to the purely elastic response when beta=0. In this work, we study the general response function and focus on the oscillatory behaviour of a fractional Maxwell system in four regimes: stress impulse, strain impulse, step stress, and driven oscillations. The solutions are presented in a format analogous to the classical oscillator, showing how the fractional nature of relaxation changes the long-time equilibrium behaviour and the short-time transient solutions. We specifically test the critical damping conditions in the fractional regime, since these have a particular relevance in biomechanics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.