Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Multi-Database Privacy-Preserving Record Linkage using Counting Bloom Filters (1701.01232v1)

Published 5 Jan 2017 in cs.DB

Abstract: Privacy-preserving record linkage (PPRL) aims at integrating sensitive information from multiple disparate databases of different organizations. PPRL approaches are increasingly required in real-world application areas such as healthcare, national security, and business. Previous approaches have mostly focused on linking only two databases as well as the use of a dedicated linkage unit. Scaling PPRL to more databases (multi-party PPRL) is an open challenge since privacy threats as well as the computation and communication costs for record linkage increase significantly with the number of databases. We thus propose the use of a new encoding method of sensitive data based on Counting Bloom Filters (CBF) to improve privacy for multi-party PPRL. We also investigate optimizations to reduce communication and computation costs for CBF-based multi-party PPRL with and without the use of a dedicated linkage unit. Empirical evaluations conducted with real datasets show the viability of the proposed approaches and demonstrate their scalability, linkage quality, and privacy protection.

Citations (5)

Summary

We haven't generated a summary for this paper yet.