Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generalised noncommutative geometry on finite groups and Hopf quivers (1612.09258v1)

Published 29 Dec 2016 in math.QA and math.RT

Abstract: We explore the differential geometry of finite sets where the differential structure is given by a quiver rather than as more usual by a graph. In the finite group case we show that the data for such a differential calculus is described by certain Hopf quiver data as familiar in the context of path algebras. We explore a duality between geometry on the function algebra vs geometry on the group algebra, i.e. on the dual Hopf algebra, illustrated by the noncommutative Riemannian geometry of the group algebra of $S_3$. We show how quiver geometries arise naturally in the context of quantum principal bundles. We provide a formulation of bimodule Riemannian geometry for quantum metrics on a quiver, with a fully worked example on 2 points; in the quiver case, metric data assigns matrices not real numbers to the edges of a graph. The paper builds on the general theory in our previous work.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube