Papers
Topics
Authors
Recent
Search
2000 character limit reached

Searching for an optimal control in the presence of saddles on the quantum mechanical observable landscape

Published 29 Dec 2016 in quant-ph | (1612.09192v1)

Abstract: The broad success of theoretical and experimental quantum optimal control is intimately connected to the topology of the underlying control landscape. For several common quantum control goals, including the maximization of an observable expectation value, the landscape has been shown to lack local optima if three assumptions are satisfied: (i) the quantum system is controllable, (ii) the Jacobian of the map from the control field to the evolution operator is full-rank, and (iii) the control field is not constrained. In the case of the observable objective, this favorable analysis shows that the associated landscape also contains saddles, i.e., critical points that are not local suboptimal extrema. In this paper, we investigate whether the presence of these saddles affects the trajectories of gradient-based searches for an optimal control. We show through simulations that both the detailed topology of the control landscape and the parameters of the system Hamiltonian influence whether the searches are attracted to a saddle. For some circumstances with a special initial state and target observable, optimizations may approach a saddle very closely, reducing the efficiency of the gradient algorithm. Encounters with such attractive saddles are found to be quite rare. Neither the presence of a large number of saddles on the control landscape nor a large number of system states increase the likelihood that a search will closely approach a saddle. Even for applications that encounter a saddle, well-designed gradient searches with carefully chosen algorithmic parameters will readily locate optimal controls.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.