Papers
Topics
Authors
Recent
2000 character limit reached

Speculation and Power Law

Published 27 Dec 2016 in q-fin.ST | (1612.08705v1)

Abstract: It is now well established empirically that financial price changes are distributed according to a power law, with cubic exponent. This is a fascinating regularity, as it holds for various classes of securities, on various markets, and on various time scales. The universality of this law suggests that there must be some basic, general and stable mechanism behind it. The standard (neoclassical) paradigm implies no such mechanism. Agent-based models of financial markets, on the other hand, exhibit realistic price changes, but they involve relatively complicated, and often mathematically intractable, mechanisms. This paper identifies a simple principle behind the power law: the feedback intrinsic to the very idea of speculation, namely buying when one expects a price rise (and selling when one expects a price fall). By this feedback, price changes follow a random coefficient autoregressive process, and therefore they have a power law by Kesten theorem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.