Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Globally Optimal Object Tracking with Fully Convolutional Networks (1612.08274v1)

Published 25 Dec 2016 in cs.CV

Abstract: Tracking is one of the most important but still difficult tasks in computer vision and pattern recognition. The main difficulties in the tracking field are appearance variation and occlusion. Most traditional tracking methods set the parameters or templates to track target objects in advance and should be modified accordingly. Thus, we propose a new and robust tracking method using a Fully Convolutional Network (FCN) to obtain an object probability map and Dynamic Programming (DP) to seek the globally optimal path through all frames of video. Our proposed method solves the object appearance variation problem with the use of a FCN and deals with occlusion by DP. We show that our method is effective in tracking various single objects through video frames.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.