Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Statistically Significant Attribute Interactions (1612.07597v2)

Published 22 Dec 2016 in stat.ML and cs.LG

Abstract: In many data exploration tasks it is meaningful to identify groups of attribute interactions that are specific to a variable of interest. For instance, in a dataset where the attributes are medical markers and the variable of interest (class variable) is binary indicating presence/absence of disease, we would like to know which medical markers interact with respect to the binary class label. These interactions are useful in several practical applications, for example, to gain insight into the structure of the data, in feature selection, and in data anonymisation. We present a novel method, based on statistical significance testing, that can be used to verify if the data set has been created by a given factorised class-conditional joint distribution, where the distribution is parametrised by a partition of its attributes. Furthermore, we provide a method, named ASTRID, for automatically finding a partition of attributes describing the distribution that has generated the data. State-of-the-art classifiers are utilised to capture the interactions present in the data by systematically breaking attribute interactions and observing the effect of this breaking on classifier performance. We empirically demonstrate the utility of the proposed method with examples using real and synthetic data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.