Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Weighted-$W^{1,p}$ estimates for weak solutions of degenerate and singular elliptic equations (1612.05583v1)

Published 16 Dec 2016 in math.AP

Abstract: Global weighted $L{p}$-estimates are obtained for the gradient of solutions to a class of linear singular, degenerate elliptic Dirichlet boundary value problems over a bounded non-smooth domain. The coefficient matrix is symmetric, nonnegative definite, and both its smallest and largest eigenvalues are proportion to a weight in a Muckenhoupt class. Under a smallness condition on the mean oscillation of the coefficients with the weight and a Reifenberg flatness condition on the boundary of the domain, we establish a weighted gradient estimate for weak solutions of the equation. A class of degenerate coefficients satisfying the smallness condition is characterized. A counter example to demonstrate the necessity of the smallness condition on the coefficients is given. Our $W{1,p}$-regularity estimates can be viewed as the Sobolev's counterpart of the H\"{o}lder's regularity estimates established by B. Fabes, C. E. Kenig, and R. P. Serapioni in 1982.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.