Papers
Topics
Authors
Recent
2000 character limit reached

A diagnostic criterion for approximate factor structure (1612.04990v2)

Published 15 Dec 2016 in q-fin.ST and stat.ME

Abstract: We build a simple diagnostic criterion for approximate factor structure in large cross-sectional equity datasets. Given a model for asset returns with observable factors, the criterion checks whether the error terms are weakly cross-sectionally correlated or share at least one unobservable common factor. It only requires computing the largest eigenvalue of the empirical cross-sectional covariance matrix of the residuals of a large unbalanced panel. A general version of this criterion allows us to determine the number of omitted common factors. The panel data model accommodates both time-invariant and time-varying factor structures. The theory applies to random coefficient panel models with interactive fixed effects under large cross-section and time-series dimensions. The empirical analysis runs on monthly and quarterly returns for about ten thousand US stocks from January 1968 to December 2011 for several time-invariant and time-varying specifications. For monthly returns, we can choose either among time-invariant specifications with at least four financial factors, or a scaled three-factor specification. For quarterly returns, we cannot select macroeconomic models without the market factor.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.