Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 40 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Gradient descent in a generalised Bregman distance framework (1612.02506v2)

Published 8 Dec 2016 in math.OC

Abstract: We discuss a special form of gradient descent that in the literature has become known as the so-called linearised Bregman iteration. The idea is to replace the classical (squared) two norm metric in the gradient descent setting with a generalised Bregman distance, based on a more general proper, convex and lower semi-continuous functional. Gradient descent as well as the entropic mirror descent by Nemirovsky and Yudin are special cases, as is a specific form of non-linear Landweber iteration introduced by Bachmayr and Burger. We are going to analyse the linearised Bregman iteration in a setting where the functional we want to minimise is neither necessarily Lipschitz-continuous (in the classical sense) nor necessarily convex, and establish a global convergence result under the additional assumption that the functional we wish to minimise satisfies the so-called Kurdyka-{\L}ojasiewicz property.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.