Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word Recognition with Deep Conditional Random Fields (1612.01072v1)

Published 4 Dec 2016 in cs.CV

Abstract: Recognition of handwritten words continues to be an important problem in document analysis and recognition. Existing approaches extract hand-engineered features from word images--which can perform poorly with new data sets. Recently, deep learning has attracted great attention because of the ability to learn features from raw data. Moreover they have yielded state-of-the-art results in classification tasks including character recognition and scene recognition. On the other hand, word recognition is a sequential problem where we need to model the correlation between characters. In this paper, we propose using deep Conditional Random Fields (deep CRFs) for word recognition. Basically, we combine CRFs with deep learning, in which deep features are learned and sequences are labeled in a unified framework. We pre-train the deep structure with stacked restricted Boltzmann machines (RBMs) for feature learning and optimize the entire network with an online learning algorithm. The proposed model was evaluated on two datasets, and seen to perform significantly better than competitive baseline models. The source code is available at https://github.com/ganggit/deepCRFs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gang Chen (592 papers)
  2. Yawei Li (72 papers)
  3. Sargur N. Srihari (7 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com