Higher Order Mutual Information Approximation for Feature Selection
Abstract: Feature selection is a process of choosing a subset of relevant features so that the quality of prediction models can be improved. An extensive body of work exists on information-theoretic feature selection, based on maximizing Mutual Information (MI) between subsets of features and class labels. The prior methods use a lower order approximation, by treating the joint entropy as a summation of several single variable entropies. This leads to locally optimal selections and misses multi-way feature combinations. We present a higher order MI based approximation technique called Higher Order Feature Selection (HOFS). Instead of producing a single list of features, our method produces a ranked collection of feature subsets that maximizes MI, giving better comprehension (feature ranking) as to which features work best together when selected, due to their underlying interdependent structure. Our experiments demonstrate that the proposed method performs better than existing feature selection approaches while keeping similar running times and computational complexity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.