Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature (1612.00514v1)
Abstract: We study functional inequalities for Markov chains on discrete spaces with entropic Ricci curvature bounded from below. Our main results are that when curvature is non-negative, but not necessarily positive, the spectral gap, the Cheeger isoperimetric constant and the modified logarithmic Sobolev constant of the chain can be bounded from below by a constant that only depends on the diameter of the space, with respect to a suitable metric. These estimates are discrete analogues of classical results of Riemannian geometry obtained by Li and Yau, Buser and Wang.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.