Papers
Topics
Authors
Recent
2000 character limit reached

Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature

Published 1 Dec 2016 in math.PR and math.FA | (1612.00514v1)

Abstract: We study functional inequalities for Markov chains on discrete spaces with entropic Ricci curvature bounded from below. Our main results are that when curvature is non-negative, but not necessarily positive, the spectral gap, the Cheeger isoperimetric constant and the modified logarithmic Sobolev constant of the chain can be bounded from below by a constant that only depends on the diameter of the space, with respect to a suitable metric. These estimates are discrete analogues of classical results of Riemannian geometry obtained by Li and Yau, Buser and Wang.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.