Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the critical points of random matrix characteristic polynomials and of the Riemann $ξ$-function (1611.10037v3)

Published 30 Nov 2016 in math.PR and math.NT

Abstract: A one-parameter family of point processes describing the distribution of the critical points of the characteristic polynomial of large random Hermitian matrices on the scale of mean spacing is investigated. Conditionally on the Riemann hypothesis and the multiple correlation conjecture, we show that one of these limiting processes also describes the distribution of the critical points of the Riemann $\xi$-function on the critical line. We prove that each of these processes boasts stronger level repulsion than the sine process describing the limiting statistics of the eigenvalues: the probability to find $k$ critical points in a short interval is comparable to the probability to find $k+1$ eigenvalues there. We also prove a similar property for the critical points and zeros of the Riemann $\xi$-function, conditionally on the Riemann hypothesis but not on the multiple correlation conjecture.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube