Papers
Topics
Authors
Recent
2000 character limit reached

Survey of Expressivity in Deep Neural Networks

Published 24 Nov 2016 in stat.ML, cs.LG, and cs.NE | (1611.08083v1)

Abstract: We survey results on neural network expressivity described in "On the Expressive Power of Deep Neural Networks". The paper motivates and develops three natural measures of expressiveness, which all display an exponential dependence on the depth of the network. In fact, all of these measures are related to a fourth quantity, trajectory length. This quantity grows exponentially in the depth of the network, and is responsible for the depth sensitivity observed. These results translate to consequences for networks during and after training. They suggest that parameters earlier in a network have greater influence on its expressive power -- in particular, given a layer, its influence on expressivity is determined by the remaining depth of the network after that layer. This is verified with experiments on MNIST and CIFAR-10. We also explore the effect of training on the input-output map, and find that it trades off between the stability and expressivity.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.