Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Asymptotic Theory of the Sparse Group LASSO (1611.06034v4)

Published 18 Nov 2016 in math.ST and stat.TH

Abstract: This paper proposes a general framework for penalized convex empirical criteria and a new version of the Sparse-Group LASSO (SGL, Simon and al., 2013), called the adaptive SGL, where both penalties of the SGL are weighted by preliminary random coefficients. We explore extensively its asymptotic properties and prove that this estimator satisfies the so-called oracle property (Fan and Li, 2001), that is the sparsity based estimator recovers the true underlying sparse model and is asymptotically normally distributed. Then we study its asymptotic properties in a double-asymptotic framework, where the number of parameters diverges with the sample size. We show by simulations that the adaptive SGL outperforms other oracle-like methods in terms of estimation precision and variable selection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.