Papers
Topics
Authors
Recent
2000 character limit reached

Random matrix approach to estimation of high-dimensional factor models

Published 17 Nov 2016 in q-fin.ST and physics.data-an | (1611.05571v2)

Abstract: In dealing with high-dimensional data sets, factor models are often useful for dimension reduction. The estimation of factor models has been actively studied in various fields. In the first part of this paper, we present a new approach to estimate high-dimensional factor models, using the empirical spectral density of residuals. The spectrum of covariance matrices from financial data typically exhibits two characteristic aspects: a few spikes and bulk. The former represent factors that mainly drive the features and the latter arises from idiosyncratic noise. Motivated by these two aspects, we consider a minimum distance between two spectrums; one from a covariance structure model and the other from real residuals of financial data that are obtained by subtracting principal components. Our method simultaneously provides estimators of the number of factors and information about correlation structures in residuals. Using free random variable techniques, the proposed algorithm can be implemented and controlled effectively. Monte Carlo simulations confirm that our method is robust to noise or the presence of weak factors. Furthermore, the application to financial time-series shows that our estimators capture essential aspects of market dynamics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.