Divergence spectra and Morse boundaries of relatively hyperbolic groups (1611.05005v2)
Abstract: We introduce a new quasi-isometry invariant, called the divergence spectrum, to study finitely generated groups. We compare the concept of divergence spectrum with the other classical notions of divergence and we examine the divergence spectra of relatively hyperbolic groups. We show the existence of an infinite collection of right-angled Coxeter groups which all have exponential divergence but they all have different divergence spectra. We also study Morse boundaries of relatively hyperbolic groups and examine their connection with Bowditch boundaries.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.