Toward a classification of semidegenerate 3D superintegrable systems (1611.02977v1)
Abstract: Superintegrable systems of 2nd order in 3 dimensions with exactly 3-parameter potentials are intriguing objects. Next to the nondegenerate 4-parameter potential systems they admit the maximum number of symmetry operators but their symmetry algebras don't close under commutation and not enough is known about their structure to give a complete classification. Some examples are known for which the 3-parameter system can be extended to a 4th order superintegrable system with a 4-parameter potential and 6 linearly independent symmetry generators. In this paper we use B^ocher contractions of the conformal Lie algebra $so(5,C)$ to itself to generate a large family of 3-parameter systems with 4th order extensions, on a variety of manifolds, and all from B^ocher contractions of a single "generic" system on the 3-sphere. We give a contraction scheme relating these systems. The results have myriad applications for finding explicit solutions for both quantum and classical systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.