Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Numerical Integration over the Unit Sphere by using spherical t-design (1611.02785v1)

Published 9 Nov 2016 in math.NA

Abstract: This paper studies numerical integration over the unit sphere $ \mathbb{S}2 \subset \mathbb{R}{3} $ by using spherical $t$-design, which is an equal positive weights quadrature rule with polynomial precision $t$. We investigate two kinds of spherical $t$-designs with $t$ up to 160. One is well conditioned spherical $t$-design(WSTD), which was proposed by [1] with $ N=(t+1){2} $. The other is efficient spherical $t$-design(ESTD), given by Womersley [2], which is made of roughly of half cardinality of WSTD. Consequently, a series of persuasive numerical evidences indicates that WSTD is better than ESTD in the sense of worst-case error in Sobolev space $ \mathbb{H}{s}(\mathbb{S}2) $. Furthermore, WSTD is employed to approximate integrals of various of functions, especially including integrand has a point singularity over the unit sphere and a given ellipsoid. In particular, to deal with singularity of integrand, Atkinson's transformation [3] and Sidi's transformation [4] are implemented with the choices of `grading parameters' to obtain new integrand which is much smoother. Finally, the paper presents numerical results on uniform errors for approximating representive integrals over sphere with three quadrature rules: Bivariate trapezoidal rule, Equal area points and WSTD.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.