Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Nonclassical Berry-Esseen inequalities and accuracy of the bootstrap (1611.02686v2)

Published 8 Nov 2016 in math.ST and stat.TH

Abstract: We study accuracy of bootstrap procedures for estimation of quantiles of a smooth function of a sum of independent sub-Gaussian random vectors. We establish higher-order approximation bounds with error terms depending on a sample size and a dimension explicitly. These results lead to improvements of accuracy of a weighted bootstrap procedure for general log-likelihood ratio statistics. The key element of our proofs of the bootstrap accuracy is a multivariate higher-order Berry-Esseen inequality. We consider a problem of approximation of distributions of two sums of zero mean independent random vectors, such that summands with the same indices have equal moments up to at least the second order. The derived approximation bound is uniform on the sets of all Euclidean balls. The presented approach extends classical Berry-Esseen type inequalities to higher-order approximation bounds. The theoretical results are illustrated with numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.