The Lindley paradox: The loss of resolution in Bayesian inference (1610.09433v2)
Abstract: There are three principle paradigms of statistics: Bayesian, frequentist and information-based inference. Although these paradigms are in agreement in some contexts, the Lindley paradox describes a class of problems, models of unknown dimension, where conflicting conclusions are generated by frequentist and Bayesian inference. This conflict can materially affect the scientific conclusions. Understanding the Lindley paradox---where it applies, why it occurs, and how it can be avoided---is therefore essential to the understanding of statistical analysis. In this paper, we revisit the Lindley paradox in the context of a simple biophysical application. We describe how predictive and postdictive measures of model performance provide a natural framework for understanding the Lindley paradox. We then identify methods which result in optimal experimental resolution for discovery.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.