Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Stability analysis of the numerical Method of characteristics applied to a class of energy-preserving systems. Part II: Nonreflecting boundary conditions (1610.09080v2)

Published 28 Oct 2016 in cs.NA

Abstract: We show that imposition of non-periodic, in place of periodic, boundary conditions (BC) can alter stability of modes in the Method of characteristics (MoC) employing certain ordinary-differential equation (ODE) numerical solvers. Thus, using non-periodic BC may render some of the MoC schemes stable for most practical computations, even though they are unstable for periodic BC. This fact contradicts a statement, found in some literature, that an instability detected by the von Neumann analysis for a given numerical scheme implies an instability of that scheme with arbitrary (i.e., non-periodic) BC. We explain the mechanism behind this contradiction. We also show that, and explain why, for the MoC employing some other ODE solvers, stability of the modes may be unaffected by the BC.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube