Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE (2103.04775v2)

Published 8 Mar 2021 in math.OC, cs.SY, and eess.SY

Abstract: This paper addresses the derivation of generic and tractable sufficient conditions ensuring the stability of a coupled system composed of a reaction-diffusion partial differential equation (PDE) and a finite-dimensional linear time invariant ordinary differential equation (ODE). The coupling of the PDE with the ODE is located either at the boundaries or in the domain of the reaction-diffusion equation and takes the form of the input and output of the ODE. We investigate boundary Dirichlet/Neumann/Robin couplings, as well as in-domain Dirichlet/Neumann couplings. The adopted approach relies on the spectral reduction of the problem by projecting the trajectory of the PDE into a Hilbert basis composed of the eigenvectors of the underlying Sturm-Liouville operator and yields a set of sufficient stability conditions taking the form of LMIs. We propose numerical examples, consisting of an unstable reaction-diffusion equation and an unstable ODE, such that the application of the derived stability conditions ensure the stability of the resulting coupled PDE-ODE system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.