Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Joint Sparse Recovery Framework for Accurate Reconstruction of Inclusions in Elastic Media (1610.08499v2)

Published 26 Oct 2016 in math.NA

Abstract: A robust algorithm is proposed to reconstruct the spatial support and the Lam\'e parameters of multiple inclusions in a homogeneous background elastic material using a few measurements of the displacement field over a finite collection of boundary points. The algorithm does not require any linearization or iterative update of Green's function but still allows very accurate reconstruction. The breakthrough comes from a novel interpretation of Lippmann-Schwinger type integral representation of the displacement field in terms of unknown densities having common sparse support on the location of inclusions. Accordingly, the proposed algorithm consists of a two-step approach. First, the localization problem is recast as a joint sparse recovery problem that renders the densities and the inclusion support simultaneously. Then, a noise robust constrained optimization problem is formulated for the reconstruction of elastic parameters. An efficient algorithm is designed for numerical implementation using the Multiple Sparse Bayesian Learning (M-SBL) for joint sparse recovery problem and the Constrained Split Augmented Lagrangian Shrinkage Algorithm (C-SALSA) for the constrained optimization problem. The efficacy of the proposed framework is manifested through extensive numerical simulations. To the best of our knowledge, this is the first algorithm tailored for parameter reconstruction problems in elastic media using highly under-sampled data in the sense of Nyquist rate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.