Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Arbres CART et Forêts aléatoires, Importance et sélection de variables (1610.08203v2)

Published 26 Oct 2016 in stat.ME, math.ST, and stat.TH

Abstract: Two algorithms proposed by Leo Breiman : CART trees (Classification And Regression Trees for) introduced in the first half of the 80s and random forests emerged, meanwhile, in the early 2000s, are the subject of this article. The goal is to provide each of the topics, a presentation, a theoretical guarantee, an example and some variants and extensions. After a preamble, introduction recalls objectives of classification and regression problems before retracing some predecessors of the Random Forests. Then, a section is devoted to CART trees then random forests are presented. Then, a variable selection procedure based on permutation variable importance is proposed. Finally the adaptation of random forests to the Big Data context is sketched.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.