Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalization Bounds for Weighted Automata (1610.07883v1)

Published 25 Oct 2016 in cs.LG and cs.FL

Abstract: This paper studies the problem of learning weighted automata from a finite labeled training sample. We consider several general families of weighted automata defined in terms of three different measures: the norm of an automaton's weights, the norm of the function computed by an automaton, or the norm of the corresponding Hankel matrix. We present new data-dependent generalization guarantees for learning weighted automata expressed in terms of the Rademacher complexity of these families. We further present upper bounds on these Rademacher complexities, which reveal key new data-dependent terms related to the complexity of learning weighted automata.

Summary

We haven't generated a summary for this paper yet.