Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Characteristic Polynomials of Symmetric Matrices over the Univariate Polynomial Ring (1610.06634v1)

Published 21 Oct 2016 in math.AG and math.OC

Abstract: Viewing a bivariate polynomial f in R[x,t] as a family of univariate polynomials in t parametrized by real numbers x, we call f real rooted if this family consists of monic polynomials with only real roots. If f is the characteristic polynomial of a symmetric matrix with entries in R[x], it is obviously real rooted. In this article the converse is established, namely that every real rooted bivariate polynomial is the characteristic polynomial of a symmetric matrix over the univariate real polynomial ring. As a byproduct we present a purely algebraic proof of the Helton-Vinnikov Theorem which solved the 60 year old Lax conjecture on the existence of definite determinantal representation of ternary hyperbolic forms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.