Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gauge theory on Aloff-Wallach spaces

Published 14 Oct 2016 in math.DG, hep-th, math-ph, and math.MP | (1610.04557v1)

Abstract: For gauge groups $U(1)$ and $SO(3)$ we classify invariant $G_2$-instantons for homogeneous coclosed $G_2$-structures on Aloff-Wallach spaces $X_{k,l}$. As a consequence, we give examples where $G_2$-instantons can be used to distinguish between different strictly nearly parallel $G_2$-structures on the same Aloff-Wallach space. In addition to this, we find that while certain $G_2$-instantons exist for the strictly nearly parallel $G_2$-structure on $X_{1,1}$, no such $G_2$-instantons exist for the tri-Sasakian one. As a further consequence of the classification, we produce examples of some other interesting phenomena, such as: irreducible $G_2$-instantons that, as the structure varies, merge into the same reducible and obstructed one; and $G_2$-instantons on nearly parallel $G_2$-manifolds that are not locally energy minimizing.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.